
Accelerating Function-Centric Applications by Discovering,
Distributing, and Retaining Reusable Context in Workflow

Systems
Thanh Son Phung

University of Notre Dame
Notre Dame, IN, USA

tphung@nd.edu

Colin Thomas
University of Notre Dame
Notre Dame, IN, USA
cthoma26@nd.edu

Logan Ward
Argonne National Laboratory

Lemont, IL, USA
lward@anl.gov

Kyle Chard
University of Chicago

Chicago, IL, USA
chard@uchicago.edu

Douglas Thain
University of Notre Dame
Notre Dame, IN, USA

dthain@nd.edu

ABSTRACT
Workflow systems provide a convenient way for users to write
large-scale applications by composing independent tasks into large
graphs that can be executed concurrently on high-performance clus-
ters. In many newer workflow systems, tasks are often expressed
as a combination of function invocations in a high-level language.
Because necessary code and data are not statically known prior
to execution, they must be moved into the cluster at runtime. An
obvious way of doing this is to translate function invocations into
self-contained executable programs and run them as usual, but this
brings a hefty performance penalty: a function invocation now
needs to piggyback its context with extra code and data to a remote
node, and the remote node needs to take extra time to reconstruct
the invocation’s context before executing it, both detrimental to
lightweight short-running functions.

A better solution for workflow systems is to treat functions
and invocations as first-class abstractions: subsequent invocations
of the same function on a worker node should only pay for the
cost of context setup once and reuse the context between different
invocations. The remaining problems lie in discovering, distributing,
and retaining the reusable context among workers. In this paper, we
discuss the rationale and design requirement of these mechanisms
to support context reuse, and implement them in TaskVine, a data-
intensive distributed framework and execution engine. Our results
from executing a large-scale neural network inference application
and a molecular design application show that treating functions
and invocations as first-class abstractions reduces the execution
time of the applications by 94.5% and 26.9%, respectively.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’24, June 3–7, 2024, Pisa, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0413-0/24/06. . . $15.00
https://doi.org/10.1145/3625549.3658663

KEYWORDS
Workflow Systems; Serverless Computing; Distributed Storage;
Burst Buffers

ACM Reference Format:
Thanh Son Phung, Colin Thomas, Logan Ward, Kyle Chard, and Douglas
Thain. 2024. Accelerating Function-Centric Applications by Discovering,
Distributing, and Retaining Reusable Context in Workflow Systems. In The
33rd International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’24), June 3–7, 2024, Pisa, Italy. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3625549.3658663

1 INTRODUCTION
Modern scientific research applications demand large amounts of
compute and storage power, reaching tens of thousands of CPUs/G-
PUs and petabytes of data. This demand transcends any specific
scientific field, for example the GAMESS application in the Exascale
Computing Project reports using 95% of the Summit supercomputer
for computations involving 20k atoms [26], the Dark Energy Science
Collaboration (DESC) scans and processes an outer space region of
(4.225𝐺𝑝𝑐)3 volume, producing 1PB of intermediate and final data
products [4], the Large Hadron Collider generates petabytes of data
per year through four experimental detectors [22], and Meta trains
its largest LLM (LLaMA 65B) on 2,048 GPUs in 21 days [17].

To match this enormous demand for data and computation,
many applications break their complex computations into a directed
acyclic graph (DAG) of independent tasks and linearly scale the
rate of computation with the number of compute nodes. Workflow
execution engines [1, 30, 38] enable such a distributed program-
ming model, allowing users to express computational needs as a
DAG of tasks and automating node acquisition and release via batch
systems, task scheduling, result retrievals, etc.

However, expressing a DAG of computations is a non-trivial task
even for technical users, as it usually requires them to understand
the computations and their associated I/O behaviors, learn to effec-
tively use the workflow execution engine and its capabilities, and
write complex customized scripts describing computations wrapped
as tasks and their associated data inputs and outputs. Therefore, a
number of parallel programming libraries (e.g., Parsl [6], Dask [23],
RADICAL [32]) have been developed with the aim to automatically

https://doi.org/10.1145/3625549.3658663
https://doi.org/10.1145/3625549.3658663

HPDC ’24, June 3–7, 2024, Pisa, Italy Thanh Son Phung, Colin Thomas, Logan Ward, Kyle Chard, and Douglas Thain

Other Layers…

Manager Node

Application y=f(g(x))

Cluster

Shared Filesystem

Worker Worker

Worker WorkerParallel
Library

a xg

b yg

c zg

f r

Execution
Engine

a

b

c

g

g

g

Figure 1: Software Stack for Task-based Applications
The parallel library receives functions as computations from the ap-
plication and builds a DAG of tasks. The execution engine receives
ready tasks from the library and sends them to workers in the cluster
for execution. Once done, results are transparently sent from workers
back to the application.

State Worker
Requirement

Execution
Requirement

Task Stateless None Code+Data+Args
Invocation Stateful Code+Data Args
Table 1: Differences between a Task and an Invocation

construct the DAG of tasks and feed it to an underlying execu-
tion engine, allowing users the ability to conveniently write and
invoke computations as regular functions in popular programming
languages (e.g, Python, Perl, etc.).

Figure 1 shows an overview of the workflow software stack. The
control plane often includes the application and the workflow sys-
tem, which consists of a parallel library and an execution engine,
all deployed on the same manager node, whereas the data plane
usually consists of a common data storage (e.g., shared filesystem,
AWS S3) and many small local storage resources (e.g., burst buffers)
from compute nodes in a cluster. At the top, an application uses
the parallel library’s APIs to invoke functions. The parallel library
then automatically creates and maintains a DAG of function invo-
cations, transforms invocations into tasks, and sends ready tasks
to the execution engine. The execution engine spawns worker pro-
cesses on compute nodes in the cluster, schedules tasks to workers
for execution, and sends results from completed tasks back to the
parallel library and the application. Data management policy can
vary greatly between specific systems, ranging from relying exclu-
sively on a common data storage for data inputs and outputs to
self-staging data inputs and outputs to and from compute nodes.

A naive transformation of function invocations into tasks in the
parallel library layer in Figure 1 can incur a large overhead penalty
however. For example, the most straightforward way to transform
a function invocation into a task is to serialize the function along
with its arguments to a file and send it as an input to a wrapper
task. This wrapper task’s job is to deserialize the file to retrieve the
function and arguments, execute it, and return the result. While this
approach effectively turns a function invocation into a standard task
and thus enjoys all benefits of optimized task scheduling and exe-
cution from the execution engine layer, it neglects key differences
between a task and an invocation.

Total Time
(s)

Overhead per
Worker (s)

Overhead per
Invocation (s)

Local
Invocation 8.89 ∗ 10−5 0 0

Remote
Task 211.06 20.65 0.19

Remote
Invocation 22.46 19.94 2.52 ∗ 10−3

Table 2: Overhead of Executing 1,000 Python Functions

Table 1 summarizes such differences between a task and an invo-
cation. A task is usually a stateless independent unit of execution
that can run on any worker. It thus doesn’t require the worker to
have any dependencies pre-installed, and instead brings its code,
data, and input arguments (or metadata of them) along with it
upon execution. On the other hand, a function invocation needs its
context (e.g., code and data) to execute: it requires a worker that al-
ready hosts its context, and then only needs to bring along the input
arguments for remote execution. With careful design, subsequent
invocations of the same function can efficiently reuse the same
context. The naive mapping in the above example however forces
a function invocation to reload its context every time it’s executed,
and thus (1) prevents the opportunity of context reuse between
invocations, and (2) is detrimental to short-running invocations (in
the order of seconds or minutes) as the context setup and reload
can easily dominate the execution time.

Table 2 shows a detailed overhead breakdown when executing
1,000 simple Python functions, each of which performs an addition
and then returns, with 3 execution modes: (1) Local Invocation,
which runs functions natively in the Python Interpreter, (2) Task,
which packages a function as a task runnable on any worker (1
worker in this example) and thereforemust load its context for every
execution, and (3) Remote Invocation, which retains and reuses the
same function context on a worker between invocations. Execution
via Task and Remote Invocation is done using TaskVine[28], a
data-intensive distributed framework and execution engine. While
Local Invocation runs the fastest as functions are executed using a
local Python Interpreter process, it can’t scale to more than 1 node.
More importantly, we see the efficiency of retaining and reusing
function contexts between invocations, as while Task and Remote
Invocation both spend roughly 20 seconds to set up the worker and
its data assets, Remote Invocation only has 2.52 ms overhead per
subsequent invocation in contrast to 0.19s of Task.

Enabling such efficiency from context reuse is not a problem
with a straightforward solution however, as discussed above. It
requires workflow systems to treat functions and invocations as
first-class abstractions. For a given function, its context C needs
to be discovered by a workflow system, either via analysis of
the function object and/or manual specification from users. C can
include anything related to the function’s code and external data
(software dependencies, input data, function’s language-specific
code, etc.) and materialize in any format (on disk, in memory, in
GPUs, etc.) on a worker node. C then needs to be packaged in
a portable format and efficiently distributed among all workers
in the system to shorten the time needed to prepare workers for
the incoming invocations. Finally, C needs to be retained on a
given worker using local resources as long as necessary, such that

Accelerating Function-Centric Applications by Discovering, Distributing, and Retaining Reusable Context in Workflow Systems HPDC ’24, June 3–7, 2024, Pisa, Italy

invocations of the same function can efficiently reuse C to avoid
paying the cost of context reload.

Our contributions in this paper are as follows:
(1) We identify a performance problem within the workflow

system software stack. We then set the goal of removing this
problem by treating functions and invocations as first-class
abstractions and devising new mechanisms to support them.

(2) We enumerate three mechanisms to support acceleration of
function-centric applications via reuse of function contexts:
discover, distribute, and retain. An analysis of the rationale
and design requirement for each mechanism is provided.

(3) We implement thesemechanisms in TaskVine, a data-intensive
distributed framework and execution engine, and describe
in detail our implementation.

(4) We evaluate our work using two applications: a large-scale
neural network inference (LNNI) using the ResNet50 [13]
model and ExaMol [35], a real-world scientific application
that combines molecular simulations with machine learn-
ing training and inference to design new molecules. LNNI
contains 100k tasks running in total 1.6 million inferences.
ExaMol contains 10k tasks. We show that our work reduces
the execution time of LNNI by 94.5% (7,485 to 414 seconds)
and ExaMol by 26.9% (4,600 to 3,364 seconds).

2 FUNCTION CONTEXT
A key characteristic of function-centric applications is that neces-
sary computations are expressed in the form of functions in a given
programming language. We first characterize several important
subjects (application, function, function context, invocation), and
then describe the three capabilities (discover, distribute, retain) for
workflow systems to support efficient context reuse in large-scale
function-centric applications.

2.1 Overview
2.1.1 Application. An application is the driving process for a large-
scale computational need. This process usually resembles a feedback
loop: the application requests some initial computations, and de-
pending on the results of them, the application may decide that
the computation need is satisfied and terminate, or it may request
more computations and continue to the next phase. Extreme forms
of this process are also possible and quite common. On one end,
an application deploys all needed computations in one phase, and
terminates once results are returned (e.g., a full non-overlapping
sweep of a dataset). On the other end, the application acts like a
service that waits for a certain event to occur and deploys computa-
tions on-the-fly. The application may run for an indefinite amount
of time. A function-centric application falls within this characteri-
zation, and special care is needed to address challenges from both
ends of the spectrum.

A function-centric application is usually designed to tackle large-
scale computational needs via the divide-and-conquer approach:
a big computational problem is broken down into many smaller
independent subproblems. The blueprint to each subproblem is
wrapped into a function in the top layer of the manager node in
Figure 1, with the specification of individual subproblems passed
to the function as arguments.

An application starts computations by invoking functions with
some arguments in a given programming language. Such invocation
is usually asynchronous and mediated by underlying frameworks
(e.g., workflow systems) for remote execution. For each computa-
tion request received, the framework returns to the application a
promise that the application will know and receive the result when
a function is successfully executed. The application is otherwise
oblivious to any other problems: it does not know how functions
are transferred over to remote workers, what dependencies are
required, which part of the functions can be effectively reused be-
tween invocations of the same function, etc. It’s the framework’s job
to make remote execution as close to a local execution as possible.

2.1.2 Function. A function is an independent unit of computation
that has inputs and outputs. It usually is not self-contained however,
as inputs can come from several sources: language-specific code
objects via the function’s arguments, access to external data storage
that’s buried deep inside a function’s code, implicit references to
package dependencies, etc. The same applies to outputs, where a
function can return results via its return value but also by writing
results to an external data storage and exiting with a success code.

A function’s code can be separated into two parts: one that sets
up a reusable context and one that invokes computations with the
given arguments. The former usually consists of setting up the con-
text of the function, such as importing relevant modules (this may
imply compiling language-specific code on-the-fly), opening files
to read in necessary states of relevant objects (e.g., load parameters
of a model into memory), or preparing the execution environment
with local resources for the invocation (e.g., move a given model
from memory into a GPU). The latter concerns more about the exe-
cution of a function and is usually dictated by the arguments given
to an invocation. While the function context sets up a shareable
and reusable environment to a function, the invocation executes
the computation and may mutate the environment on the go, with
each invocation likely very different than others to reflect different
subproblems. Therefore, it is important to separate out the reusable
context of a function such that subsequent invocations can reuse
the context efficiently.

2.1.3 Function Context. As discussed above, a function context
takes care of setting up the environment for an incoming invoca-
tion. Since this environment setup happens on a fresh worker with
no dependencies pre-installed as the application runs, this setup
process can be arbitrarily complex, from fetching datasets from
external sources to the worker’s local disk, to caching objects in
memory for subsequent invocations or loading models into acceler-
ators. Therefore, the setup of function context is best represented
by an executable object that allows arbitrary code execution, e.g., an
auxiliary function. This function’s job is not to directly execute the
necessary computations, but to allow users to specify all steps to
prepare the environment in a programmatic way. Most importantly,
once the setup is complete, the executable object must terminate
without relinquishing all the setup work done.

Since the context setup can execute arbitrary code and leaves
behind an environment when terminated, this environment will
occupy arbitrary local resources on the worker. This implies that a
worker must be able to account for such resource occupation and

HPDC ’24, June 3–7, 2024, Pisa, Italy Thanh Son Phung, Colin Thomas, Logan Ward, Kyle Chard, and Douglas Thain

Function
F

Worker

Env.
Setup
Proc.

Invok.
F(x3)

Invok.
F(x1)

Invok.
F(x2)

Reusable Function Context

Code
(source or
serialized)

Software
Dependencies

Input Data

Environment
Setup

(1)

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3) (3) (3) (3)

Figure 2: Discovering, Distributing, and Retaining Function
Context for Remote Invocation on Workers
(1) Function context is discovered by analyzing and detecting code, soft-
ware dependencies, input data, and environment setup code. (2) These
elements are packaged and sent to a worker. (3) An environment setup
process prepares a reusable function context, and subsequent invoca-
tions use one copy of context instead of reloading each time.

monitor its consumption, especially in cacheable resources (mem-
ory, disk, GPUs), and report such consumption back to the manager
for scheduling decisions. The resource accounting for functions
is therefore more complex than tasks, as tasks are designed to be
independent of each other and thus have independent resource
allocations[21], while functions are designed to maximize shar-
ing and it can be difficult to precisely keep track of such sharing
in the worker’s local system (e.g., memory pages shared between
concurrent invocations).

An avid reader may notice that the context setup concept is very
similar to the concept of code hoisting in compiler literature in
the sense of hoisting the expensive but deterministic operations
out of a given loop to prevent duplicate computations. The reader
would be right: this paper aims to hoist out the context setup part
of a function such that subsequent invocations can benefit from
the price of setting up the environment once. Complexities arise
when this concept is brought to the distributed systems’ world:
what mechanisms are needed to efficiently support this function
context concept when faced with tens of thousands of invocations
and hundreds of machines. Note that this paper doesn’t aim at
automating context hoisting as in the compiler literature: it provides
the supporting mechanisms for users or other systems to do so.
Thus, while automatic context detection is a promising idea, it is
out of scope of this paper.

2.1.4 Invocation. An invocation is the execution part of a function
and mainly characterized by the arguments given to it. Invocations
are independent and typically different from one another to reflect
different computations. An invocation is dependent on the exis-
tence of a function context: it executes based on the environment
the context has set up, and may mutate the environment during
its execution. A large portion of the environment is usually left
untouched or read-only from the invocation however, such as the
function’s software dependencies or input datasets. A reusable func-
tion context is this portion of the environment: invocations of the
same function can freely mutate the environment in its memory

space, but the part of the environment left untouched can be effi-
ciently shared between invocations. Additionally, an invocation is
much more lightweight than a task, as shown in Table 1 - only the
arguments along with some metadata of an invocation are needed
for a worker with proper context setup to execute it.

2.2 Mechanisms
2.2.1 Discover. To enable remote execution of invocations, work-
flow systems first need a mechanism that discovers the context of
the invocations’ function — all necessary dependencies and arbi-
trary environment setup — to send the context to a given worker.
The context includes four distinct elements: the function code itself,
the code’s dependencies, input data, and arbitrary environment
setup. Point 1 of Figure 2 summarizes these elements of function
context discovery.

Function code. A worker first needs the function code to exe-
cute invocations. This code by itself can have two formats: code as
raw strings of bytes (source code) and code as a language-specific
object. Source code is fairly straightforward to discover: the work-
flow system can simply inspect the file containing the source code,
identify and copy all lines of the relevant function, and add it to
the context object of a given function. In many cases, such source
code is not easy or even possible to obtain. The function given to a
workflow systemmay have passed through many layers of software
and the workflow system thus can’t easily locate the source code.
Additionally, the function itself may not even have a source form,
such as functions that result from dynamic execution of a given
string in a programming language or lambda functions. These cases
require the workflow system to serialize the function’s code object
into a binary string or a file, which is usually achieved by walking
the abstract syntax tree (AST) of the function code. Once sent over
the network to a remote worker, the worker then deserializes the
given string or file and attempts to reconstruct the object on its
side. Thus, the serialized format of such functions is the important
bit that is added to the context object in these cases.

Software Dependencies. Many approaches can encapsulate the
software dependencies of a given function. A user might directly
provide a specification of all software dependencies of the function,
with or without versions specified, to the workflow system along
with the function invocation[24]. The workflow system’s job then is
to send the invocation to a remote worker, install all dependencies,
and execute it. Another approach is for users to provide a container
image that already contains all software dependencies, and the
workflow system only has to ship the image to a worker and execute
the invocation within this container. Finally, if the user doesn’t
provide any hints, a workflow system can walk the function code’s
AST and try to infer necessary dependencies from the code. Once
identified, the workflow system can either choose to install all
dependencies into a container and then send it to workers, or to let
workers install dependencies themselves.

Input data. Generally speaking, input data covers anything
an invocation might use in the beginning of its execution. There-
fore, the function code and software dependencies once discovered
should also be treated as a source of input. Since invocations mainly
differ in their arguments, special care is needed to prevent shareable
data to be unnecessarily sent along with every invocation. This

Accelerating Function-Centric Applications by Discovering, Distributing, and Retaining Reusable Context in Workflow Systems HPDC ’24, June 3–7, 2024, Pisa, Italy

 Broadcast Context C

Manager

Worker

Worker

Worker

Worker

Worker

C

C

C

C

C

(a) No communication between workers

 Broadcast Context C

WorkerWorker

Worker Worker Worker Worker

Manager

C C

C C C C

Cluster

(b) Full communication between workers

 Broadcast Context C

WorkerWorker

Worker Worker Worker Worker

Manager

C C

C C C C

Cluster 1 Cluster 2

(c) Limited comm. between sets of workers

Figure 3: Solutions to Distributing Function Contexts in Workflow Systems
def context_setup(args):

load model parameters from disk to memory
move model from memory to GPU
register model variable to global namespace

def infer(img, context=context_setup):
global model
model.infer(img)

Figure 4: Example: Separating Context Setup from Computa-
tion in a ML Inference Function

can be achieved by having explicit data-to-invocation and data-to-
worker bindings, such that each invocation is bound to several data
inputs before dispatched to a remote worker, and each data input
is registered to the worker once fetched and locally cached. In this
way, multiple invocations concurrently executed on a worker can
share just 1 copy of the set of input data, and an incoming invocation
only needs to send its arguments to the worker for execution.

Arbitrary environment setup. This is the final step to fully
create an environment for the incoming invocations on a remote
worker. Since it is an executable object with arbitrary execution,
users can define the setup computation in a script to be executed as
a process, a function to be executed as a thread, etc. This setup also
should be run only when needed to avoid repeatedly setting up the
same environment and to allow for a maximal degree of sharing
between invocations of the same function. Thus, there needs to be
an invocation-to-context binding for every invocation such that
workflow systems can utilize this binding in invocation scheduling
and deduplicating contexts in a remote worker.

2.2.2 Distribute. Once the function context is discovered, work-
flow systems need to broadcast the context to all connected workers
as fast as possible to reduce the wait time of tasks on the manager
node[20]. While the problem of maximum broadcasting efficiency
has been extensively studied in the computer network literature
and related fields, the solution to this problem solely depends on
one condition: the viability of direct data transfers between workers.
Figure 3 shows three possible solutions depending on this condition.

On one end, workers cannot communicate with each other at all
and rely only on the manager for all data transfers. This mode of
communication can happen in clusters that have strict networking
policy between machines and thus no internal communication is
allowed. In this scenario, the broadcasting problem has only one
solution: the manager must sequentially send data to workers.

On the other end, workers have no obstructions in communi-
cating and transferring data between one another. This scenario is
more common in clusters that have relaxed internal networking pol-
icy and/or are built to support large MPI jobs. In this scenario, the
broadcasting problem can utilize the bandwidth between machines
to maximize the data transfer throughput and avoid bottleneck-
ing the manager’s bandwidth. Most solutions then revolve around
sending data like a spanning tree of workers. Note that any transfer-
able data in the system has to be uniquely identified and read-only,
otherwise data corruption can silently happen. This can be imple-
mented in a variety of ways, such as maintaining a table of files in
the manager, naming files based on the hash of their contents, etc.
This approach is most suitable to send function contexts within a
cluster as function contexts are shareable and read-only.

In the middle, workers can communicate with each other but the
bandwidth is limited between certain sets of workers. This situation
may arise when a set of workers are launched from a local cluster
and another set are launched via commercial clusters (e.g., Google
Cloud, AWS, etc.) This strategy has the advantage of using cheap
cloud resources as needed, but requires a workflow system to be
aware of which cluster a worker belongs to. Once this information
is figured out, a manager simply transfers data sequentially between
clusters and instructs workers within the same cluster to broadcast
data like a spanning tree.

2.2.3 Retain. Finally, workflow systems need a mechanism that
retains the function context on a worker for reuse between invo-
cations. As discussed in subsection 2.1.3, workflow systems can
support discovering and moving necessary elements of the context
to a worker, but it is the job for the environment setup function to
properly load required dependencies and datasets from disk into
the worker’s memory, accelerators, or other local resources. Figure
4 shows an example of an environment setup function that prepares
the worker for incoming inference invocations on a ML model.

Once the reusable context is set up, subsequent invocations
can inherit and execute in this environment in many ways. The
reusable context can continue to live as a daemon process or a
thread that runs in the background with the worker process and
waits for invocations as events. Upon receiving invocations, it can
execute invocations directly within its memory space. Additionally,
if permitted by the application, the context process can also fork to
execute so many invocations can concurrently benefit from a shared
environment. A worker’s job then is simply to accept the invocation
request from the manager, send the request to the context process,

HPDC ’24, June 3–7, 2024, Pisa, Italy Thanh Son Phung, Colin Thomas, Logan Ward, Kyle Chard, and Douglas Thain

wait for the notification of a successful execution, and return results
back to the manager.

3 IMPLEMENTATION
Section 2 discusses many requirements, tradeoffs, and possible
implementation routes for all three mechanisms to support context
reuse in large-scale function-centric applications. We now describe
in detail our implementation.

3.1 Overview
We target applications written in Python as it has increasingly be-
come a programming language of choice for large-scale scientific
applications. Much of our implementation is done with TaskVine,
a data-intensive framework for large-scale applications. TaskVine’s
components include a Python frontend where users can specify
Python functions for remote execution, and a C backend that han-
dles task execution, result retrieval, worker acquisition and release,
fault tolerance, etc. For the parallel library layer, we implement
the function context API in the TaskVine frontend. To increase
the potential impact of our work to other established applications
with their own software stack, we also integrate TaskVine as a
backend execution engine to Parsl [6], resulting in the Parsl TaskVi-
neExecutor. For the execution engine layer, we implement all the
mechanisms in the TaskVine backend with changes to many of its
components: task scheduling, task representation and deployment,
worker’s local management of resources, etc. We first describe our
implementation for each mechanism, then show how we enhance
TaskVine and design TaskVineExecutor to incorporate these mecha-
nisms and support the new function and invocation abstractions
with context reuse.

3.2 Discover
As discussed in subsection 2.2.1, the mechanism to discover func-
tion contexts requires the analysis and detection of four elements:
function code, software dependencies, input data, and arbitrary
environment setup.

Function code. Our implementation supports both approaches
in detecting the function’s code. We add to TaskVine an API that
allows a user to specify a list of function objects or names to be
included in the function context. Upon receiving the list, TaskVine
first tries to extract the source code of such functions using the
built-in inspect module in the Python standard library. If success-
ful, TaskVine adds the source code of the functions to the context
so that the worker can simply invoke these functions by their
names. Otherwise, TaskVine serializes the functions to files using
cloudpickle [8] and adds those files as inputs to the relevant con-
text. The functions will later be reconstructed on a worker and
ready for invocations.

Software dependencies. We modify TaskVine and the Pon-
cho [27] toolkit to detect, install, and package all necessary depen-
dencies of a function. After extracting the functions’ code, TaskVine
gives them to Poncho to scan their ASTs for imported modules,
create a local Conda [14] environment containing these modules
with versions resolved, and package the environment into a spe-
cially formatted tarball using the conda-pack [15] tool. Once the
environment tarball is created, TaskVine then binds the tarball to

the functions’ context as an input file. TaskVine extensively uses
this binding to send only the environment tarball when needed:
a context process on a worker will reuse a copy of the tarball to
execute an invocation if it is available in the worker’s cache, and
otherwise will request a transfer of tarball from either the manager
or another worker which has it.

Input data. Any input data that is shareable between invocations
can be declared to TaskVine as an input file to the relevant function’s
context and mark itself as cacheable and transferable. Once all
shareable input data are bound to a given context, we create a
special script that will act like the daemon process on a worker
node as mentioned in subsection 2.2.3. We then create a special task
from this script (this task does no actual work and cooperates with
the worker process to invoke functions instead, more in subsection
3.4), bind all input data to this task, and use TaskVine’s regular
task scheduler and data-intensive capabilities (e.g., unique data
naming, data caching on worker nodes, data transferring between
nodes) to send the environment setup process and stage input data
to the remote node as necessary. Once the special task is ready,
subsequent invocations use the same copy of the shareable input
data as described above.

Environment Setup. Each function F submitted to TaskVine
can specify another helper function H to setup its context. F itself
can just contain the invocation part, and defer the setup to H. We
modify TaskVine such that upon receiving F, TaskVine registers
H to the context of F. A worker is then instructed to execute H as
part of its work setting up F ’s context. Each invocation of F then
only executes its distinctive computation with the guarantee that
all the setup work it needs from H is present and ready to be used
on a worker node.

3.3 Distribute
TaskVine supports distribution modes 3a and 3b in Figure 3. When
an application starts up and the first workers join the system,
TaskVine sequentially sends input files from the manager node
to these workers. If the worker-to-worker transfer feature is avail-
able and enabled, once aworker reports backwith a success-transfer
notification, the manager then directs that worker to start sending
relevant input files to other workers instead. Each worker is capped
to 𝑁 transfers of input files at any given time to avoid a sink in
the spanning tree of data transfers between workers. To quickly
distribute function contexts to connected workers, we package a
given function context into a set of files as described in subsection
3.2 and use TaskVine’s built-in data distribution capability.

3.4 Retain
Once a function context is discovered by the manager (see subsec-
tion 3.2), TaskVine creates a special task called a "library" that runs
like a daemon until terminated and cooperates with the worker
process to execute invocations. The library is a Python script and
acts like a service as described in subsection 2.2.3: it waits for in-
structions from the worker to execute invocations, and once done
lets the worker know that results are available to retrieve. TaskVine
then sends the library with the function context to a given worker.
The protocol between a library and a worker is as follows:

Accelerating Function-Centric Applications by Discovering, Distributing, and Retaining Reusable Context in Workflow Systems HPDC ’24, June 3–7, 2024, Pisa, Italy

1 import ndcctools.taskvine as vine
2 def context_setup(y):
3 ...
4 def f(x):
5 ...
6 manager = vine.Manager(...)
7 library = manager.create_library_from_functions('lib', f,
8 context=context_setup, context_args=[y])
9 dataset_file = vine.File('dataset.tar.gz', cache=True,
10 peer_transfer=True)
11 library.add_input(dataset_file)
12 manager.install_library(library)
13 ...
14 for i in range(10):
15 invocation = vine.FunctionCall('lib', 'f', args=[i])
16 manager.submit(invocation)
17 ...

Figure 5: Support of Function and Invocation Abstractions
via a Code Sample in TaskVine
A user creates a library for function f, adds a common input data
to the library, and registers the library to the manager. A function
is pinpointed by its library’s name and its name, and subsequent
invocations only need to specify their arguments.

(1) The worker executes the library as a normal task by forking
then exec’ing the Python script.

(2) The library starts up, reads in its configurations, executes all
context setup functions provided to it, sends back a notifica-
tion to the worker to let it know that it’s ready to execute
invocations, and waits for a message from the worker.

(3) The manager sends an invocation to the worker, and the
worker waits for the ready message from the library. Upon
receiving the ready message, the worker sets up a sand-
box specifically for the invocation, and sends the invocation
metadata, its arguments, and the sandbox to the library.

(4) Each invocation has two execution options: direct or fork.
If the option is direct, then the library changes the work-
ing directory to the invocation’s sandbox, then loads the
arguments of the invocation into memory and executes it
synchronously. Once the invocation is complete and the con-
trol is returned to the library, it serializes the result in to
a result file in the invocation’s sandbox, changes its work-
ing directory back, and lets the worker know. If the option
is fork, then the library instead forks itself and waits for
the child process to be done via the SIGCHLD signal or a
message from the worker. The child process changes the
working directory into the sandbox, loads the arguments, ex-
ecutes the invocation, dumps the result to the result file, and
exits. The library upon receiving the SIGCHLD signal lets
the worker know that it has a result to be fetched. In either
case, the worker sends back the result file to the manager
and destroys the invocation’s sandbox. Both the library and
the worker go back to waiting for invocations as in step (3).

3.5 TaskVine Enhancement
With all three mechanisms’ implementation described, we now
present the function context API via a code sample and the changes
to the internal structures of TaskVine.

3.5.1 Function Context API. Figure 5 shows an example of how
TaskVine supports function and invocation abstractions. Assume
a user has broken the computation into f and context_setup, one
first creates a TaskVine Manager object in line 6. Lines 7-8 tell the
manager to create a library for a given function and its context, and
the created library will automatically discover 3 out of 4 elements
in subsection 3.2: function code, software dependencies, and envi-
ronment setup. If there’s a common input data between invocations,
then the user can declare it to the manager and add it as an input
to the library (lines 9-11). Once the context discovery via the f ’s
library is done, it is registered to the manager in line 12. To invoke
a function from a known library, the user simply needs to specify
the relevant library and function’s names with the invocation’s
distinct arguments (line 15).

3.5.2 Internals. We now describe actions a TaskVine manager
takes once an invocation is submitted in a newly created workflow
(line 16 in Figure 5.) The manager first pinpoints the invocation’s
library via the library and the function’s names. A library by default
takes all resources of a worker, but it can be configured to run on a
portion of a worker as well. A library by default runs 1 invocation
of a function at a given time, but this can also be changed by setting
its number of invocation slots. Once the runtime details of a library
are determined, the manager sequentially checks a hash ring of
connected workers to see if any is available to run the library. The
first available worker is sent an instance of the library to be exe-
cuted as described in subsection 3.4 along with its pre-specified
input data. The manager then holds on to that worker and sends
as many invocations as available slots the library currently has. If
the library is full, the manager can either send another library to
the worker provided that the worker still has adequate amount of
resources, or it moves on to the next worker in the ring.

Resource allocation for libraries and invocations is tricky as
discussed in subsection 2.1.3.We currently employ a resource model
where the library owns an arbitrary but fixed allocation of resources
on a worker node in terms of cores, memory, and disk. A library
has a logical type of resource called invocation slots, in which each
slot runs at most 1 invocation at a time. For example, to run 8
invocations concurrently on a 32-core worker node where each
invocation uses at most 4 cores, one can set the library to occupy
the whole worker node and set the number of invocation slots to 8.
An alternative strategy is to set each library to use 4 cores and have
1 invocation slot, so the manager can run 8 libraries concurrently.

Since a library by default takes over a whole worker, one type of
library can occupy every worker in the system and prevent invo-
cations of functions in other libraries from running. To avoid this,
note that a library is a special task to a worker and by itself doesn’t
do any actual work. Therefore, when the manager is scheduling
an invocation from another library and finds a library on a worker
with no slots being actively used (an empty library), the manager
instructs the worker to remove that library and reclaim resources.
Invocation scheduling then happens as described above.

3.6 Parsl-TaskVineExecutor
We briefly describe our integration of TaskVine with Parsl (TaskVi-
neExecutor) here, and reserve a full explanation to future work.
Going back to Figure 1, the integration sits between the parallel

HPDC ’24, June 3–7, 2024, Pisa, Italy Thanh Son Phung, Colin Thomas, Logan Ward, Kyle Chard, and Douglas Thain

Group Machine
Prefix

CPU Model
(# of Machines, GFlops)

DRAM Capacity
(# of Machines)

1 d32cepyc
[001-070]

AMD EPYC 7532
32-Core Processor

(58, 4.4)
256GBs (58)

2 d32cepyc
[076-260]

AMD EPYC 7543
32-Core Processor

(117, 5.4)

256GBs (95)
2TBs (22)

3 qa-a10-
[001-022]

Intel(R) Xeon(R) Gold
6326 CPU @ 2.90GHz

(14, 1.9)
256GBs (14)

4 qa-a40-
[001-010]

Intel(R) Xeon(R) Gold
6326 CPU @ 2.90GHz

(7, 1.9)
256GBs (7)

5 sa-rtx6ka-
[001-005]

Intel(R) Xeon(R) Silver
4316 CPU @ 2.30GHz

(5, 1.9)
256GBs (5)

Table 3: Major Machine Groups in the Local Cluster
library layer (Parsl) and the execution engine (TaskVine). Since
Parsl maintains the DAG of invocations and sends ready ones to
TaskVine, from TaskVineExecutor’s perspective, it receives an ar-
bitrary stream of function invocations. Therefore, the executor is
designed to be a service process: it waits for any invocation of any
function coming in at any time, packages the invocation into either
a TaskVine Task or FunctionCall, executes it, and returns the result.
Upon startup, the executor spawns a manager process to coordinate
work, and a factory process to coordinate the number of workers in
a cluster. The executor sits in the application process and sends de-
tails of ready invocations to the manager process for execution. The
execution service ends when it is explicitly noted by a user or when
the Python interpreter is exiting. If the interpreter exits normally,
then the executor sends a shutdown signal to the manager process
to stop any work and the factory process to remove workers in the
cluster. For an abnormal exit (e.g., receiving SIGKILL signal), the
manager and factory processes continuously check their ppids and
exit/cleanup upon change.

4 EVALUATION
This section starts with a summary of the LNNI and ExaMol appli-
cations in greater detail. We then describe the general settings of
all the experiments, with special settings explicitly noted in certain
experiments. Lastly, our evaluation aims to answer these following
questions:

• Q1: What is the effect of context reuse in the execution time
of these applications?

• Q2: How is the benefit of context reuse affected when invo-
cations take more time to execute?

• Q3: If we change the amount of available compute power by
increasing or reducing the number of workers, what is the
change in the execution speedup for an application?

• Q4: Howmany times does a function context on a worker get
shared between invocations? Does the share value increase
over time?

• Q5: What is the invocation overhead breakdown of different
levels of context reuse, and how does increasing the level of
context reuse affect this overhead?

4.1 Application Summary
4.1.1 Large-Scale Neural Network Inference. The LNNI application
runs 10k to 100k inference invocations, each of which runs 16 to
1,600 inferences, on a pretrained ResNet50 model. ResNet50 is a
convolutional neural network with the goal of classifying a given
image to 1,000 predefined classes of objects. The application invokes
functions by calling the TaskVine frontend API. The TaskVine fron-
tend prepares the invocations and, depending on the configuration,
sends ready tasks or invocations to the TaskVine backend for exe-
cution. The TaskVine backend then manages the execution of tasks,
result retrievals, worker control, etc., as shown in Figure 1.

4.1.2 ExaMol. ExaMol implements workflows to explore materials
design through a combination of quantum chemistry and machine
learning tasks. We utilize an ExaMol application which implements
a single-objective optimization of ionization potential through an
active learning approach [11]. The task-scheduling logic is defined
using Colmena [2, 36] and deploys PM7 calculations with Open-
MOPAC [29] to gather new data concurrently with training or
inference tasks implemented with Scikit-Learn and RDKit [16, 19].
Each type of task is defined using Python functions and invoked via
Parsl’s API [6]. Parsl maintains a graph of pending functions and
sends ready ones to the TaskVineExecutor, which deploys functions
remotely using the TaskVine backend, as described above. The total
number of tasks is around 10k.

4.2 Experiment Settings
We run all applications using machines from a local heterogeneous
HTCondor [31] cluster. All machines in the cluster have SATA
6GB/s SSD as local disk with 10 Gbs Ethernet link running Red
Hat Enterprise Linux release 8.9 (Ootpa) as their OS. Table 3 shows
5 major machine groups with varying CPU models and DRAM
capacity in the cluster that account for 96.2% of all machines used
in any run. All experiments are run with a similar proportion of
machine groups to that of Table 3 unless explicitly noted otherwise.
Workers and invocations in applications have generous memory
allocations (e.g., LNNI invocations never exceed 1GB and are al-
located 4 GBs of DRAM.) Note that while a faster CPU generally
results in a faster execution time, our work reduces execution time
instead via state sharing and reducing the amount of unnecessarily
repeated computation between invocations.

Applications are run using 10 to 150 TaskVine workers, noted
explicitly in every experiment. Each worker is allocated 32 cores
and 64GBs of memory and disk. For the LNNI application, each
inference invocation is allocated 2 cores and 4 GBs of memory and
disk, so a worker can run 16 concurrent invocations. For the Examol
application, each invocation is allocated 4 cores and 8 GBs of mem-
ory and disk, resulting in a maximum of 8 concurrent invocations
per worker. An application starts its execution when submitted
invocations are known by the workflow system and at least 95% of
the requested workers are connected.

We investigate three levels of context reuse in this paper:

• L1: No context reuse. This level consists of running invo-
cations purely as tasks without use of local resources for
sharing or caching on any worker. Invocations are wrapped

Accelerating Function-Centric Applications by Discovering, Distributing, and Retaining Reusable Context in Workflow Systems HPDC ’24, June 3–7, 2024, Pisa, Italy

(a) LNNI, 100k invoc.

(b) ExaMol, 10k invoc.

Figure 6: Execution Time of Selected Applications with Dif-
ferent Levels of Context Reuse

as tasks with a generic Python script, and all tasks are in-
structed to pull all data and software dependencies from
the local Panasas ActiveStor 16 [25, 37] shared file system
with 77 nodes supporting up to 84 Gb/s read bandwidth and
94,000 read IOPS. This level represents a stateless task with
no worker requirement and execution requirement of code,
data, and arguments as shown in Table 1.

• L2: Context reuse on disk. This level supports data-to-invocation
bindings and thus extensively uses the local disk of every
worker to execute invocations. Invocations are still wrapped
as tasks with a generic Python script. However, relevant data
and dependencies are fetched and cached to a worker once
in the first invocation, and subsequent invocations share one
copy of data from the function context in the worker’s cache.
This level represents a stateful task as the middle ground
with worker requirement of data and execution requirement
of code and arguments.

• L3: Context reuse on disk and memory. This level supports
both data-to-invocation and context-to-invocation bindings.
This level goes beyond L2 and additionally utilizes the library
process (subsection 3.4) to fetch and load all functions and
their associated context setups to the local memory of a
worker before invoking any invocation. Invocations then
inherit the environment cached in the library with necessary

Mean Std Deviation Min Max
L1 21.59 34.78 6.71 289.72
L2 13.48 3.68 6.09 45.33
L3 4.77 3.43 2.67 39.51

Table 4: Statistics for Invocation Run Time with Three Levels
of Context Reuse in LNNI-100k (in seconds)

data and contexts loaded and execute requiring only their
arguments. This last level represents a stateful invocation
with worker requirement of code and data and execution
requirement of arguments.

Lastly, we run LNNI on all 3 levels and Examol on L1 and L2.
L3 is not supported yet for Examol since it’s unclear whether arbi-
trary functions can fit in and be compatible to each other within a
function context process.

4.3 Q1: Effect of Different Levels of Context
Reuse on the Execution Time of
Applications

To evaluate the degree of execution speedup from different levels
of context reuse, we run the LNNI application with 100k inference
invocations and the ExaMol application with 10k invocations both
using 150 workers. Figure 6 shows the expected outcome when
contexts of invocations are discovered, distributed, and retained
using local resources of workers. Reusing function contexts on disk
cuts the execution time of both the LNNI and the ExaMol appli-
cation by 55.1% and 26.9%, respectively. For the LNNI application,
reusing function context in memory further improves application
execution time by 87.7% compared to that but on disk. The results
follow closely to the discussion in Section 2. At the L1 level, invoca-
tions simply pull relevant data and dependencies from a shared file
system, resulting in no context sharing between concurrent invoca-
tions on a worker. L2 brings the function context to the local disk
of a worker, and this not only allows concurrent and subsequent
invocations on the same worker to benefit from this disk utilization,
but also removes the shared file system as a possible I/O bottleneck.
Finally, invocations in the LNNI application at L3 reuses the context
loaded to the memory space of the worker, and this removes most
of the overhead per invocation. Once an invocation gets to a worker,
it only has to wait for the worker to load the arguments to memory
and can quickly start its execution.

Figure 7 shows the histograms of all invocations’ run time of the
LNNI application with 3 levels of context reuse. We do not show
values greater than 40 seconds for better visualization. Shifting the
level of context reuse from left to right, we see that the histogram
gradually shifts to the left, with less spreading and more stable
pattern. In L1, most invocations tend to execute within 12-20s,
while invocations in L2 spread around 10-16s, and those in L3
cluster around 3-7s. This shows another benefit of context reuse:
invocations are executed faster and in a more stable way. Table 4
presents detailed statistics of all invocations in the LNNI application
under different levels of context reuse, with L3 having the fastest
run time per invocation, the smallest standard deviation in run time,
and the smallest maximum run time.

HPDC ’24, June 3–7, 2024, Pisa, Italy Thanh Son Phung, Colin Thomas, Logan Ward, Kyle Chard, and Douglas Thain

(a) L1 context reuse (b) L2 context reuse (c) L3 context reuse

Figure 7: Histograms of Invocation Run Time for the LNNI Application with 100k Invocations

Figure 8: Effect of Increasing Individual Invocations’ Run
Time on LNNI’s Execution Time

4.4 Q2: Effect of Increasing Invocation’s Run
Time on the Execution Speedup

To study the effect of increasing individual invocation’s run time,
we run the LNNI application with 10k inference invocations on
100 workers and vary the amount of inferences performed by each
invocation: 16, 160, and 1,600. Average invocation run time for each
is 6.2 seconds, 40.9 seconds, and 379.7 seconds, respectively. For this
experiment, the run with L1 and 16 inferences uses a significant
amount (89%) of group 2 machines. Figure 8 shows the execution
time of LNNI across different number of inferences per invocation
and different levels of context reuse. When each invocation runs 16
inferences in L3, the application’s execution time is vastly reduced
by 81% and 75% compared to L1 and L2, respectively. However,
when each invocation has more computations, the speedup reduces
to 41.3% and 41.2% for 160 inferences and 15.6% and 3.7% for 1,600
inferences. This is expected since while an invocation runs longer,
the overhead of context reload stays the same. The benefit of context
reuse, while still significant, accordingly diminishes. We can also
see that context reuse L2 slightly outperforms L1 as it converts
remote I/O to local I/O using the data-to-invocation binding and
removes the shared file system as a bottleneck. This bottleneck
is additionally shown with the run of L1 with 16 invocations as
invocations are not run faster even when they are run with better
hardware compared to the runs of L2 and L3 with 16 invocations.
In summary, the shorter a function invocation, the more important
it is for invocations to reuse their function context.

4.5 Q3: Effect of Varying the Number of
Connected Workers on the Execution
Speedup

To study the potential change in the execution speedup of an appli-
cation, we run the LNNI application with 10k inference invocations
and vary the number of connected workers between 50, 100, and
150. For this experiment, the run with L3 and 50 workers has no
group 2 machines. Figure 9 shows that the LNNI application under
L3 does not improve much if at all. This is because invocations
are deployed, executed, and retrieved so quickly that the workflow
system doesn’t need additional computation power: a small amount
of available computation power is sufficient when the overhead per
invocation is minimal. When the number of workers is reduced to
10 and 25 for L3 however (not shown), the execution time of LNNI
goes up to 455 and 145 seconds, respectively, indicating that the
workflow system has idle time between sending invocations and
retrieving results when the number of workers is too small.

On the other hand, the LNNI application under L1 and L2 shows
slight improvements when the number of workers is increased
from 50 to 150. This means that the overhead per invocation is
large enough that the workflow system needs to use additional
workers to occupy itself with invocation deployment, execution,
and retrieval. In summary, an efficient context reuse between invo-
cations removes a large portion of unnecessary computations and
allows applications to finish the same amount of work with much
less computation power.

4.6 Q4: Share Value of Deployed Function
Contexts Over Time

As mentioned in subsection 3.4, TaskVine creates and deploys the
library task as a daemon process on a worker that loads function
contexts to memory and other local resources via executing context
setup functions of invocations. Figure 10 shows the number of
deployed libraries as invocations complete their executions for the
LNNI application with 100k invocations on 150 workers. We see
a quick ramp up in the amount of deployed libraries to respond
to many connected workers waiting to execute invocations. The
number of deployed libraries still increases as more invocations
complete, but gradually falls off to around 2,000 active libraries
since they are enough to execute many short-running invocations.

Figure 11 shows the number of invocations a library serves as
they complete their executions, on average. We can see that the

Accelerating Function-Centric Applications by Discovering, Distributing, and Retaining Reusable Context in Workflow Systems HPDC ’24, June 3–7, 2024, Pisa, Italy

Figure 9: Effect of Increasing the Number of Workers on
LNNI’s Execution Time

Figure 10: Number of De-
ployed Libraries w.r.t. Its In-
vocations

Figure 11: Average Library
Share Value w.r.t. Its Invoca-
tions

share value of libraries on average grows linearly as invocations
complete, since a library is prepared to serve an invocation imme-
diately after completing a previous invocation. This result corre-
sponds to the intuition that a deployed library is a one-time cost:
subsequent invocations serviced by this library can efficiently share
the same environment context with negligible overhead.

4.7 Q5: Overhead Breakdown of Different Levels
of Context Reuse

We now investigate the overhead breakdown of executing functions
with L2 and L3 context reuse (we skip L1 due to its high variance as
shown in Table 4) using the LNNI application. All experiments in
this subsection are run with both the manager and worker on the
same machine to have a degree of consistency and avoid interfer-
ences from other sources (e.g., network). For level L2, we execute
two remote invocations sequentially such that the first invocation
(L2-Cold) pays the cost of caching data to the local disk of the
worker and expanding it into a reusable format, and the second one
(L2-Hot) reuses such data from the disk. For level L3, we execute
one remote invocation and measure the overhead of the invocation
with the associated library. We break the overhead down into 4
parts: (1) time to transfer invocation details and its data (Invoc. &
Data Transfer), (2) time for the worker to setup the environment
(Worker Overhead), (3) time for the invocation or library to recon-
struct its necessary states in its process (Library/Invoc. Overhead),
and (4) execution time of the invocation (Exec. Time).

Table 5 shows the overhead breakdown of each type of task/in-
vocation. LNNI invocations’ software dependencies contain 144
Python packages and amount to 3.1GBs of disk size in the reusable

Invoc. & Data
Transfer

Worker
Overhead

Library/Invoc.
Overhead

Exec.
Time

L2
(Cold) 1.004 15.435 0.403 5.469

L2
(Hot) 5.22 ∗ 10−4 1.18 ∗ 10−3 0.327 5.046

L3
(Library) 0.989 15.251 2.729 N/A

L3
(Invoc.) 2.34 ∗ 10−4 2.75 ∗ 10−4 5.14 ∗ 10−4 3.079

Table 5: Overhead Breakdown of LNNI invocations with L2
and L3 (in seconds)

format and 572 MBs when tarballed, dominating the size of input
data. In L2 (Cold), we see that it takes the manager 1.004s to send
the invocation details and input data to the worker, and 15.435s
for the worker to receive and process the execution request from
the manager. The majority of the worker overhead comes from
unpacking the tarball of software dependencies into a directory
to be reused by invocations. Once it is set up, the worker creates
a sandbox for the first invocation and links relevant input files.
The invocation takes 0.403s to deserialize Python objects from in-
put files and reconstruct them in memory. Once it’s done, it takes
5.469s to execute 16 inferences using the reconstructed Resnet50
model. Comparing L2 (Cold) and L2 (Hot), we can see the benefit of
reusing context on disk as data transferring time and environment
setup time are reduced significantly. This is due to less data being
transferred and the data on disk being reused. Invocation overhead
and execution time are roughly similar, as both L2 (Cold) and L2
(Hot) need to load the ResNet50 model’s parameters from the disk
to memory and build the model as a Keras Model object. Note that
this model object can be reused between invocations, and L3 exploit
this insight by using the library to set up a reusable environment.

L3 (Library) has comparable data transfer and worker overhead
time compared to L2 (Cold) as it also needs to unpack the tarball
of software dependencies locally, but has a higher overhead to
set up its states. This is because it takes extra time to execute the
helper function that further sets up states in memory by loading
parameters and building the model in advance. Once this is done,
the library reports back to the worker and is ready to receive in-
vocations. Note that the library does no actual work as stated in
subsection 3.4 so there is no measurement on its execution time.
Once this cost is paid, we can see that L3 (Invoc.)’s overhead is cut
down by several magnitudes in many overhead parts as it reuses
the model object cached in memory by the library. Furthermore,
since it only has to execute its own distinct part of computation, its
execution time is cut down by about 2 seconds. This time reduction
directly comes from the 2.7 seconds that the library spends once to
set up the reusable states in memory (including the model building),
while L2 invocations have to unnecessarily repeat the reusable part
of its computation. In short, overhead per invocation with context
reuse is significantly cut down as more sharing is enabled.

5 RELATEDWORK
Serverless Computing. Serverless computing is broadly defined
as the on-demand allocation of resources for short bursts of remote

HPDC ’24, June 3–7, 2024, Pisa, Italy Thanh Son Phung, Colin Thomas, Logan Ward, Kyle Chard, and Douglas Thain

execution, providing Functions-as-a-Service (FaaS). Prominent ser-
vices include Amazon Lambda [5], Apache OpenWhisk [12], and
Azure Serverless [9]. These platforms allow users to invoke remote
functions using the appropriate scheme as defined by the vendor.
To utilize these platforms however, functions must be manually
registered and invoked in a platform-specific way. In many cases,
proprietary cloud storage must be used, and compute resources
must be provided by the vendor. In contrast, workflow systems that
enable context reuse as stated above are more application-specific.
Functions don’t have to be registered with workflow systems in ad-
vance. All dependencies of a function can be dynamically discovered
and packaged instead of a user’s manual dependency specification.
Computational power (i.e., workers/compute nodes) is not vendor-
specific: an application using TaskVine’s context setup APIs can
spawn workers anywhere, on cloud or on premise. Finally, work-
flow systems have a more proactive approach to data movement
and tracking: instead of being hidden behind a cloud storage, data
is explicitly moved between workers to maximize the aggregated
bandwith of the system.

Workflow Systems. Workflow systems encompass a variety of
softwares assisting in the deployment of work across computational
resources [10, 32, 39]. These systems strike a balance between ease
of application development, performance benefits, and other desir-
able characteristics of scalable applications. Here we pay specific
attention to the distinction between task-based and invocation-
based workflow systems. Workflows are traditionally viewed as
task-based applications. Invocation-based systems imply that con-
text resides on the remote execution site, reducing startup cost
and latency. Ray [18] is an integrated parallel workflow system in
which tasks are expressed as decorated Python functions which
may be invoked. There may only be one actor, or context per Ray
worker, and data is typically accessed through a shared file sys-
tem. TaskVine however may have multiple libraries installed on a
worker, and data may be shared across invocations inside a worker,
leveraging the benefit of many cores on a single node.

Parallel Libraries. Parallel libraries offer the convenience to
express and execute a workflow via invoking functions in a given
programming language. Function invocations are represented in
a DAG in which concurrent tasks are easily recognizable. Parallel
libraries such as Ray, Parsl [6], and Dask [23] construct a DAG of
tasks in which an underlying task scheduler may utilize to exe-
cute the workflow. Our contribution in TaskVine is a sophisticated
scheduler which directly supports invocation as a standalone unit
of computation and an alternative execution model to task. With
the ability to have many libraries, or contexts, on a single worker,
TaskVine function invocations can be efficiently matched with exe-
cution platforms at a fine-grained level. While users have the option
of expressing their workflows using the TaskVine frontend APIs,
the choices of a parallel library to use are much wider. The TaskVine
backend is fully integrated with popular libraries like Parsl and
Dask, in which TaskVine acts like the execution engine for work-
flows described in the language of either library. This combines
the sophisticated workflow expression and DAG creation of the
parallel libraries while also utilizes the proactive data management
and efficient computation execution features of TaskVine.

Data Staging Technologies. HPC-scale distributed file systems
such as Lustre [7] and Panasas [37] are effective in their purpose

and often the best solution in cases where the size of application
data exceeds the available local storage on compute nodes. However
a predominant contemporary issue in such distributed file systems
is the scale and concurrency at which they can handle and will
become a bottleneck for data-intensive applications. This has led
to the development of various data staging technologies such as
burst buffers and ephemeral file systems which reside across node
local storage. Examples of these include BeeOND [3], GekkoFS
[33], and BurstFS [34]. A key component of TaskVine is data man-
agement and distribution. For many applications we encourage
the use of local storage and inter-node communication instead of
relying on distributed file systems. The fundamental difference be-
tween TaskVine and other node-local storage implementations is
that TaskVine manages both the workflow and storage, fully lever-
aging the awareness of data locality in making decisions for task
scheduling. This holistic capability of TaskVine makes it possible to
efficiently utilize the local resources of compute nodes to support
both the task and invocation execution modes of data-intensive
and/or function-centric workflows. Other burst buffer and ad-hoc
file system implementations must be deployed and managed inde-
pendently, and while providing generally favorable performance,
valuable information about storage is hidden from the workflow
manager, blocking the full potential of using local storage for state-
ful computations.

6 CONCLUSION AND FUTUREWORK
Workflow systems allow users to express and execute large scale
applications on remote computational resources via a DAG of inde-
pendent stateless tasks. These workflows are often interpreted and
executed in a task-based model, in which tasks and its dependen-
cies are bundled together and delivered to remote nodes at runtime
and live in the cluster only as long as the task is running. This
execution model is detrimental to the performance of function-
centric applications however. Invocations differentiate themselves
via their arguments, but when executed as tasks, must also reload
their contexts, including code and data, for every execution. Our
work addresses this execution deficiency by treating functions and
invocations as first-class abstractions for execution: reusable func-
tion contexts are first discovered via analysis of the function code
and/or user’s specification, distributed efficiently across all workers
in the system, and then retained indefinitely on the workers waiting
for invocations. Subsequent invocations then can reuse the function
context and its already set-up environment, and only have to wait
for arguments to load into their memory space before promptly
starting to execute. Future work includes further improvements
to the function-centric programming model in order to facilitate
a seamless discovery of high-level contexts among invocations to
the same function, with necessary code, data, and dependencies
packaged automatically without the need for user intervention.

ACKNOWLEDGEMENT
This work was supported by National Science Foundation grant
OAC-1931348. Logan Ward was supported by the Exascale Comput-
ing Project (17-SC-20-SC) of the U.S. Department of Energy (DOE)
and by DOE’s Advanced Scientific Research Office (ASCR) under
contract DE-AC02-06CH11357.

Accelerating Function-Centric Applications by Discovering, Distributing, and Retaining Reusable Context in Workflow Systems HPDC ’24, June 3–7, 2024, Pisa, Italy

REFERENCES
[1] [n. d.]. Altair Grid Engine. https://www.altair.com.
[2] 2021 [Online]. Colmena. ExaLearn and Parsl Teams. Available: https://

colmena.readthedocs.io/en/latest/index.html.
[3] 2023. BeeGFS. https://www.beegfs.io/c/. [Online; accessed 20-July-2023].
[4] Bela Abolfathi, David Alonso, Robert Armstrong, Éric Aubourg, Humna Awan,

Yadu N Babuji, Franz Erik Bauer, Rachel Bean, George Beckett, Rahul Biswas,
et al. 2021. The lsst desc dc2 simulated sky survey. The Astrophysical Journal
Supplement Series 253, 1 (2021), 31.

[5] Inc Amazon.com. [n. d.]. Amazon Lambda. https://aws.amazon.com/lambda/
[6] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan

Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/
3307681.3325400

[7] Sean Cochrane, Ken Kutzer, and LMcIntosh. 2009. Solving theHPC I/O bottleneck:
Sun™ Lustre™ storage system. Sun BluePrints™ Online, Sun Microsystems (2009).

[8] Cloudpickle contributors. 2023. Cloudpickle. https://github.com/cloudpipe/
cloudpickle

[9] Microsoft Corporation. [n. d.]. Microsoft Azure. https://azure.microsoft.com/en-
us

[10] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
et al. 2015. Pegasus, a workflow management system for science automation.
Future Generation Computer Systems 46 (2015), 17–35.

[11] Hieu A. Doan, Garvit Agarwal, Hai Qian, Michael J. Counihan, Joaquín Rodríguez-
López, Jeffrey S. Moore, and Rajeev S. Assary. 2020. Quantum Chemistry-
Informed Active Learning to Accelerate the Design and Discovery of Sustainable
Energy Storage Materials. Chemistry of Materials 32, 15 (May 2020), 6338–6346.
https://doi.org/10.1021/acs.chemmater.0c00768

[12] The Apache Software Foundation. [n. d.]. Apache OpenWhisk. https:
//openwhisk.apache.org/

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[14] Anaconda Inc. 2020. Anaconda Software Distribution.
https://docs.anaconda.com/.

[15] Anaconda Inc. 2023. conda-pack. https://anaconda.org/conda-forge/conda-pack.
[16] Greg Landrum. 2013. Rdkit documentation. Release 1, 1-79 (2013), 4.
[17] Meta. 2023. Pursuing groundbreaking scale and accelerating research using

Meta’s Research SuperCluster. https://ai.meta.com/blog/supercomputer-meta-
research-supercluster-2023/

[18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {AI} applications. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18). 561–577.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[20] Thanh Son Phung, Ben Clifford, Kyle Chard, and Douglas Thain. 2023. Maximiz-
ing Data Utility for HPC Python Workflow Execution. In Proceedings of the SC ’23
Workshops of The International Conference on High Performance Computing, Net-
work, Storage, and Analysis (<conf-loc>, <city>Denver</city>, <state>CO</state>,
<country>USA</country>, </conf-loc>) (SC-W ’23). Association for Comput-
ing Machinery, New York, NY, USA, 637–640. https://doi.org/10.1145/3624062.
3624136

[21] Thanh Son Phung, Logan Ward, Kyle Chard, and Douglas Thain. 2021. Not All
Tasks Are Created Equal: Adaptive Resource Allocation for Heterogeneous Tasks
in Dynamic Workflows. In 2021 IEEE Workshop on Workflows in Support of Large-
Scale Science (WORKS). 17–24. https://doi.org/10.1109/WORKS54523.2021.00008

[22] Christopher J. Rhodes. 2013. Large Hadron Collider (LHC). Science Progress
96, 1 (2013), 95–109. https://doi.org/10.3184/003685013X13623370524107
arXiv:https://doi.org/10.3184/003685013X13623370524107 PMID: 23738440.

[23] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huff and James Bergstra (Eds.). 130 – 136.

[24] Tim Shaffer, Thanh Son Phung, Kyle Chard, and Douglas Thain. 2023. Landlord:
Coordinating Dynamic Software Environments to Reduce Container Sprawl.
IEEE Transactions on Parallel and Distributed Systems 34, 5 (2023), 1376–1389.
https://doi.org/10.1109/TPDS.2023.3241598

[25] Tim Shaffer and Douglas Thain. 2017. Taming metadata storms in parallel
filesystems with metaFS. In Proceedings of the 2nd Joint International Workshop
on Parallel Data Storage & Data Intensive Scalable Computing Systems. 25–30.

[26] Andrew Siegel, Erik W. Draeger, Jack Deslippe, Thomas Evans, Marianne M.
Francois, Timothy C. Germann, Daniel F. Martin, and William Hart. 2021. Map
Applications to Target Exascale Architecture with Machine-Specific Performance
Analysis, Including Challenges and Projections. Technical Report. https://doi.org/
10.2172/1838979

[27] Barry Sly-Delgado, Nick Locascio, David Simonetti, Brett Wiseman, Ben Tovar,
and Douglas Thain. 2022. PONCHO: Dynamic Package Synthesis for Distributed
and Serverless Python Applications. In Workshop on High Performance Serverless
Computing. doi: 10.1145/3526060.3535459.

[28] Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew
Hennessee, Ben Tovar, and Douglas Thain. 2023. TaskVine: Managing In-Cluster
Storage for High-Throughput Data Intensive Workflows. In Proceedings of the SC
’23 Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis (, Denver, CO, USA,) (SC-W ’23). Association for
Computing Machinery, New York, NY, USA, 1978–1988. https://doi.org/10.1145/
3624062.3624277

[29] James J. P. Stewart. 2012. Optimization of parameters for semiempirical methods
VI: more modifications to the NDDO approximations and re-optimization of
parameters. Journal of Molecular Modeling 19, 1 (Nov. 2012), 1–32. https://doi.
org/10.1007/s00894-012-1667-x

[30] Douglas Thain, Todd Tannenbaum, and Miron Livny. 2003. Condor and the
Grid. In Grid Computing: Making the Global Infrastructure a Reality, Fran Berman,
Anthony Hey, and Geoffrey Fox (Eds.). John Wiley. isbn: 0-470-85319-0.

[31] Douglas Thain, Todd Tannenbaum, and Miron Livny. 2005. Distributed Comput-
ing in Practice: The Condor Experience. Concurrency and Computation: Practice
and Experience 17, 2-4 (2005), 323–356. doi: 10.1002/cpe.v17:2/4.

[32] Matteo Turilli, Vivek Balasubramanian, Andre Merzky, Ioannis Paraskevakos,
and Shantenu Jha. 2019. Middleware building blocks for workflow systems.
Computing in Science & Engineering 21, 4 (2019), 62–75.

[33] Marc-André Vef, Nafiseh Moti, Tim Süß, Tommaso Tocci, Ramon Nou, Alberto
Miranda, Toni Cortes, and André Brinkmann. 2018. GekkoFS - A Temporary Dis-
tributed File System for HPC Applications. In 2018 IEEE International Conference
on Cluster Computing (CLUSTER). 319–324. https://doi.org/10.1109/CLUSTER.
2018.00049

[34] Teng Wang, Kathryn Mohror, Adam Moody, Kento Sato, and Weikuan Yu. 2016.
An Ephemeral Burst-Buffer File System for Scientific Applications. In SC ’16:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 807–818. https://doi.org/10.1109/SC.2016.68

[35] L. Ward. 2023. ExaMol. https://github.com/exalearn/examol
[36] Logan Ward, Ganesh Sivaraman, J Gregory Pauloski, Yadu Babuji, Ryan Chard,

Naveen Dandu, Paul C Redfern, Rajeev S Assary, Kyle Chard, Larry A Curtiss,
et al. 2021. Colmena: Scalable machine-learning-based steering of ensemble
simulations for high performance computing. In 2021 IEEE/ACM Workshop on
Machine Learning in High Performance Computing Environments (MLHPC). IEEE,
9–20.

[37] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System.. In FAST, Vol. 8. 1–17.

[38] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing.

[39] Charles (Chao) Zheng, Ben Tovar, and Douglas Thain. 2017. Deploying High
Throughput Scientific Workflows on Container Schedulers with Makeflow and
Mesos. In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2017). doi: 10.1109/CCGRID.2017.9.

https://www.altair.com
https://www.beegfs.io/c/
https://aws.amazon.com/lambda/
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://github.com/cloudpipe/cloudpickle
https://github.com/cloudpipe/cloudpickle
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us
https://doi.org/10.1021/acs.chemmater.0c00768
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://doi.org/10.1109/CVPR.2016.90
https://ai.meta.com/blog/supercomputer-meta-research-supercluster-2023/
https://ai.meta.com/blog/supercomputer-meta-research-supercluster-2023/
https://doi.org/10.1145/3624062.3624136
https://doi.org/10.1145/3624062.3624136
https://doi.org/10.1109/WORKS54523.2021.00008
https://doi.org/10.3184/003685013X13623370524107
https://arxiv.org/abs/https://doi.org/10.3184/003685013X13623370524107
https://doi.org/10.1109/TPDS.2023.3241598
https://doi.org/10.2172/1838979
https://doi.org/10.2172/1838979
https://doi.org/10.1145/3624062.3624277
https://doi.org/10.1145/3624062.3624277
https://doi.org/10.1007/s00894-012-1667-x
https://doi.org/10.1007/s00894-012-1667-x
https://doi.org/10.1109/CLUSTER.2018.00049
https://doi.org/10.1109/CLUSTER.2018.00049
https://doi.org/10.1109/SC.2016.68
https://github.com/exalearn/examol

	Abstract
	1 Introduction
	2 Function Context
	2.1 Overview
	2.2 Mechanisms

	3 Implementation
	3.1 Overview
	3.2 Discover
	3.3 Distribute
	3.4 Retain
	3.5 TaskVine Enhancement
	3.6 Parsl-TaskVineExecutor

	4 Evaluation
	4.1 Application Summary
	4.2 Experiment Settings
	4.3 Q1: Effect of Different Levels of Context Reuse on the Execution Time of Applications
	4.4 Q2: Effect of Increasing Invocation's Run Time on the Execution Speedup
	4.5 Q3: Effect of Varying the Number of Connected Workers on the Execution Speedup
	4.6 Q4: Share Value of Deployed Function Contexts Over Time
	4.7 Q5: Overhead Breakdown of Different Levels of Context Reuse

	5 Related Work
	6 Conclusion and Future Work
	References

